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1. INTRODUCTION

Flow through porous medium is very prevalent in nature and therefore the
study of flow through porous medium has become of principal interesting in many
scientific and engineering applications. In the theory of flow through a porous
medium, the role of momentum equation or force balance is occupied by the
numerous experimental observations summarized mathematically as the Darcy’s law.
It is observed that the Darcy’s law is applicable as long as the Reynolds number based
on average grain (pore) diameter does not exceed a value between 1 and 10. But in
general the speed of specific discharge increases, the convective forces get developed
and the internal stress generated in the fluid due to its viscous nature produces
distortion in the velocity field. Also in the case of highly porous media such as fiber
glass, papas dandelion etc., the viscous stress at the surface is able to penetrate into
medium and produce gradient. Thus between the specific discharge and hydraulic
gradient is inadequate in describing high speed flows or flows near surface which may
be either permeable or not. Hence consideration for non-Darcian description for the
viscous flow through a porous medium in warranted. Saffaman (18) employing
statistical method derived governing equation for the flow in a porous medium which
takes into account the viscous stress. Later another modification has been suggested

by Brinkman (2)
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0=-Vp- (f)v + UV

in which £V?V is intended to account for the distortion of the velocity profiles near

the boundary. The same equation was derived analytically by Tam (24) to describe the

viscous flow at low Reynolds number past a swam of small particles.

The process of free convection as a mode of heat transfer has wide
applications in the fields of Chemical Engineering, Aeronautical and Nuclear power
generation. It was shown by Gill and Casal (5) that the buoyancy significantly affects
the flow of low Prandtal number fluids which is highly sensitive to gravitational force
and the extent to which the buoyancy force influences a forced flow is a topic of
interest. Free convection flows between two long vertical plates have been studied for
many years because of their engineering applications in the fields of nuclear reactors,
heat exchangers, cooling appliances in electronic instruments. These flows were
studied by assuming the plates at two different constant temperatures or temperature
of the plates varying linearly along the plates etc. The study of fully developed free
convection flow between two parallel plates at constant temperature was initiated by
Ostrach (13). Combined natural and forced convection laminar flow with linear wall
temperature profile was also studied by Ostrach (14). The first exact solution for free
convection in a vertical parallel plate channel with asymmetric heating for a fluid of
constant properties was presented by Anug (1). Many of the early works on free
convection flows in open channels have been reviewed by Manca et al. (7). Recently,
Campo et al. (3) considered natural convection for heated iso-flux boundaries of the
channel containing a low-Prandtl number fluid. Pantokratoras (15) studied the fully
developed free convection flow between two asymmetrically heated vertical parallel

plates for a fluid of varying thermo-physical properties. However, all the above
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studies are restricted to fully developed steady state flows. Very few papers deal with
unsteady flow situations in vertical parallel plate channels. Transient free convection
flow between two long vertical parallel plates maintained at constant but unequal
temperatures was studied by Singh et al.(20). Jha et al. (6) extended the problem to
consider symmetric heating of the channel walls. Narahari et al. (9) analyzed the
transient free convection flow between two long vertical parallel plates with constant
heat flux at one boundary, the other being maintained at a constant temperature. Singh
and Paul (20) presented and analysis of the transient free convective flow of a viscous
incompressible fluid between two parallel vertical walls occurring as a result of
asymmetric heating / cooling of the walls. Narahari (10) presented an exact solution to
the problem of unsteady free convective flow of a viscous incompressible fluid
between two long vertical parallel plates with the plate temperature linearly varying
with time at one boundary, that at the other boundary being held constant. There are
many reasons for the flow to become unsteady. When the current is periodic due to
on-off control mechanisms or due to partially rectified a-c voltage, there exist
periodic heat inputs. Hence, it is important to study the effects of periodic heat flux on
the unsteady natural convection, imposed on one of the plates of a channel formed by
two long vertical parallel plates, the other being held at a constant initial fluid
temperature. Recently Narahari(11)has discussed the unsteady free convection flow of
dissipative viscous incompressible fluid between two long vertical parallel plates in
which the temperature of one of the plates is oscillatory whereas that of the other plate
is uniform.

Raptis and Singh (17) studied numerically the natural convection boundary
layer flow past an impulsively started vertical plate in a Darcian porous medium. The

thermal radiation effects on heat transfer in magneto-aerodynamic boundary layers
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has also received some attention, owing to astronautical re-entry, plasma flows in
astrophysics, the planetary magneto-boundary layer and MHD propulsion systems.
Mosa (8) discussed one of the first models for combined radiative hydromagnetic heat
transfer, considered the case of free convective channel flows with an axial
temperature gradient. Nath et al. (12) obtained a set of similarity solutions for
radiative — MHD stellar point explosion dynamics using shooting methods

In this chapter we make an attempt to analyze the unsteady convective heat
transfer of dissipative viscous fluid through a porous medium confined in a vertical
channel on whose walls an oscillatory temperature is prescribed. Approximate
solutions to coupled non-linear partial differential equations governing the flow and
heat transfer are solved by a perturbation technique. The velocity, temperature, skin
friction and rate of heat transfer are discussed for different variations of G, D%, and

Ec.

2. FORMULATION AND SOLUTION OF THE PROBLEM

We consider the unsteady flow of a viscous incompressible fluid through a
porous medium in a vertical channel bounded by flat walls in the presence of constant
heat sources. The unsteadiness in the flow is due to the oscillatory temperature
prescribed on the boundaries. We choose a Cartesian coordinate system 0(x y) with
walls at y = + 1 by using Boussinesq approximation we consider the density variation
only on the buoyancy term. Also the kinematic viscosity, the thermal conductivity are

treated as constants. The equations governing the flow and heat transfer are,
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P - po = -Bo(T = To) (2.3)

where u is a velocity component in x-direction, T is a temperature, p is a
pressure, p is a density ,k is the permeability of the porous medium,u is dynamic
viscosity, kr is coefficient of thermal conductivity, B is coefficient of volume
expansion and Q is the strength of heat source.

The boundary conditions are

u=0, T=Tiaty=-

u=0,T=T,+ e(T,-Ty) cos wt (2.7)
on introducing the non dimensional variables

=2 y=vyiL, 6= - , t' = o,
ylIL T,-T,

Equations 2.1 & 2.2 reduce to (dropping the dashes)

2N _Gos a—“—(D-1 + M%) (2.8)
ot oy’
00 %0 ou
py? &2 —a@+PEc| & | 4+ PECD W (2.9)
o oyt EY
where
T -T)
G=pgl’ % Grashof number)
L2
D" = s (Darcy parameter)
P= ﬂKCP (Prandtl number)
f
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Q.L?

o= K (Heat source parameter)

f

V2
EC=— "+ (Eckert Number)
L*(T-T,)C,
2 wl’ 2 ap2 A

yo=— (Wormsely Number) M, =M°+D

14

the transformed boundary conditions are

u=0, 6=0, aty=-1

u=0, 6=1+ecos(ot) aty=+1 (2.10)
In view of the boundary conditions (2.10) we assume

U=Up+ee'u

=00 +ce"f (2.11)
Substituting the series expansion (2.11) in equations (2.8) & (2.9) and separating the
steady and transient terms we get

0%,

~ M2y, =-G#, (2.12)

ayZ
o%u, . .
Y —(M +iy“)u, =-Gg, (2.13)
0%, o%u, 1,2

5o g,+PECS 2+ PECD U2 =0 (2.14)
2
TG (@ +iPy2)0,+ (2P Ec) M. M 4 (PECD YUy, (2.15)

Since the equations (2.9 — 2.12) are non-linear coupled equations., assuming Ec <<'1
we take

Uo = Uoo + EC Uo1

0o = 000 + EC 001 } (2.16)
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Substituting (2.16) in equations (2.12 — 2.15) and separating the like terms we get

Uss —M2uy, = -G8y, U (£1)=0 (2.17)
G —a 0, =0, 000(-1) =0,000 (+1) =1 (2.18)
U —(MZ +iy*)u, =-G6,,, U (£1)=0 (2.21)
O —iPy°6,=0,  010(-1)=0, B1p(+1)=1 (2.22)

The solutions of equations (2.17)-(2.24) are

0ry =2, (Ch(AY) ~Ch(A) G 720 wa, (S (A,y) - shs) o 2

+05(NE2Y) | Ch(B:Y),
~Sh(g,)  Ch(p,)

) +

Sh(M,y) —~ )
Thiv)) =GB =Chis) g s

Ch(M,y) _sh(p) M)
2 (Ch(AY) = Ch(B) - D) + . (Sh(AY) = Sh(B) - 5

)+

Ugo = 8y, (SN(,Y) = Sh(3,)

)

Sh(M,y) B Ch(M,y)
Ch(M.) ) +a,,(Ch(B,y) —Ch(z,) Ch(M.) )+

Ch(M,y) 3 Sh(M,y)
W) +a,,(Sh(A.y) —Sh(5,) Ch(Ml))

Uy = a11(8h(ﬂ2 y) - Sh(ﬂz)

a,5(Ch(Ay) —Ch(£)

Oy, = 8,5, (Ch(B,y) —Ch(5;) %%);)) + 8,05 (Sh(S3Y) = Sh(/) %ﬂﬂ”;)

Ch(4,y) | sh(4,y)
Ch(B,)  Sh(B,)

) +

+0.5(
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o = s (C(B,Y) - cmm%) + 2 (SN(B,Y) - Sh(m)—sshtf(ﬂﬂsy))) +
+ 2, (Ch(By) - mwa%ﬂﬂsy))) +a,,(Sh(,y) — Sh(4)) Sshlf(ﬂgy)))

Where,

Bl =v.B; =a.fs =y. B =a+iPy. f =M/ +iy’,

kl = M1+ﬁzlk2 = Ml_ﬂzika :ﬂ1+ﬂ2’k4 :ﬂz_ﬂl'

k5:ﬂ1+M11 kszﬁl_Ml-

SHEAR STRESS and NUSSELT NUMBER

The Shear stress at the boundaries T:ﬂ(d_u] which in the non dimensional form
+L

reduces to Tt = LZ = (d_uJ
(VJ dy y:il
LZ
and corresponding expressions are
Ty=+1 = bss + EC bsg + € et (b53 + EcC beo)
Ty=+1 = bs; + ECc bss + & eﬂ (b57 + Ec b59)
The Rate of heat transfer (Nusselt number )aty = + L is given by

qw = Nu(£l) = (d_ej
dy y=+1

and the corresponding expressions are
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(NU)y=1 = bas + EC byg + € €" (byg + EC bsy )
(NU)y:+1 =bsp+ Ecbss+ € e" (b47 + Ec bg; )

Where by,bg,...oceiiiiiiinnnnn. ,bs1 are constants given in the Appendix.

3. DISCUSSION OF THE NUMERICAL RESULTS

In this analysis we discuss the effect of dissipation on Non-Darcy convective
heat transfer flow of a viscous electrically conducting fluid through porous medium in
vertical channel with oscillatory temperature. We also consider heat generating

sources in flow region. Through out the analysis we taken prandtle no. P=0.71.Figure
1-5 represent the axial velocity with different variation G, D™ ,M,a and E, .Figure-1
represent variation of u with Grashof number G it is found that the axial velocity is in

the vertically downward direction. |u| Enhances increase in G>0 and depreciates with

G<0 with maximum attend at y=0. Variation of u with D' shows that lesser the

permeability of the porous medium larger the|u|and further lowering of permeability
smaller |u| in entire flow region (fig-2). The variation of u with Hartmann number M
shows that higher the Lorentz force (M<4) larger |u| and for further higher Lorentz
force smaller |u| in entire flow region (fig-3).An increase in strength of heat source
parameter o leads to depreciates |u| in flow region (fig-4). The variation of u with Ec

shows that higher than dissipation heat lesser |u| in the left half and larger |u| in the

right half of the channel (fig-5).
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The non dimensional temperature 6 is shows in figures 6-10 for different

parametric values. We follow the convection that the non dimension temperature 6 is

positive or negative according as the actual temperature is greater or lesser than To.

Fig-6 represents the variation Groshof no. G it is found that the actual temperature
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depreciates with G> 0 and enhances with G<0. The variation of 6 with D"and M
shows that lesser the permeability of the porous medium larger the actual temperature
in the flow region (fig-7) and the variation of 6 with M shows that higher the Lorentz
force larger the actual temperature in the flow region (fig-8). From (fig -9), we find
that the actual temperature enhances « <4 and highera >6. It depreciates in entire
flow region except in vicinity of y=-1 where it enhances with« . The variation of 0
with Ec shows that higher the dissipative heat larger the actual temperature in the

entire flow region (fig-10).
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The shear stress T at y=+1 is shown in the table 1-4 for different values G, D™,

M, « and Ec. It is found that t enhances with increase in |G| at both the walls. The
variation of T with D" shows lesser the permeability of the porous medium larger |r|

for further lowering of the permeability smaller |r| at both walls .Higher Lorentz

force smaller T and for further higher force larger #at both wall y=+1. An increase in
strength of heat source parameter « results an enhancement in @ at both the walls.

The variation of z with Ec shows that higher the dissipative heat larger t at y=+1 and

smaller at y=-1.

Table-1
Shear stress (1) at y=+1
G [ I 1T v v VI
100 | 4.16028 | 4.2791 | -0.3668 | -5.1648 | 4.2642 | 4.5802
300 | 14.4808 | 14.838 | 0.8996 | -6.4946 | 14.8642 | 15.1242
-100 | -6.16088 | -6.2791 | -1.6332 | 5.1648 | -6.3612 | -6.6608
-300 | -16.4808 | -16.837 | -2.8996 | 6.495 | -17.124 | -18.121
Annexure- 1
D | 100 | 200 | 100 | 100 | 100 | 100
M 2 2 4 6 2 2
o 2 2 2 2 4 6
Table-2
Shear stress (1) at y=-1
G [ 1 11 [\ V VI
100 | -3.941 | -4.1842 | 0.10058 | 5.4949 | -4.1242 | -4.2408
300 | -13.83 | -14.557 | -1.6983 | 6.4848 | -14.098 | -14.298
-100 | 5.9419 | 6.1842 | 1.8994 | -4.495 | 6.1242 | 6.2383
-300 | 15.825 | 16.5526 | 3.6982 | -5.485 | 16.4282 | 16.8542

See Annexure- 1
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Table -3
Shear stress (1) aty =1

G | I 1T v
1x10° | 0.46187 | 0.46722 | 0.47223 | 0.49623
3x10° | 1.43906 | 1.56199 | 1.68387 | 1.80576
-1x10° | -0.46187 | -0.46722 | -0.47223 | -0.49623
-3x10° | -1.43906 | -1.56199 | -1.68387 | -1.80576

Ec 0.001 0.003 0.005 0.007

2323

The shear stress T at y=+1 is shown in the table 1-4 for different values G, D™,

M, « and Ec. It is found that t enhances with increase in |G| at both the walls. The
variation of T with D" shows lesser the permeability of the porous medium larger |z'|

for further lowering of the permeability smaller |r| at both walls .Higher Lorentz

force smaller T and for further higher force larger @at both wall y=+1. An increase in
strength of heat source parameter « results an enhancement in @ at both the walls.
The variation of z with Ec shows that higher the dissipative heat larger t at y=+1 and

smaller at y=-1.

Table -4
Shear stress (1) aty =-1
G | I 1T v
1x10° | -1.04128 | -1.03828 | -1.03494 | -1.03161
3x10° | -3.08744 | -3.00381 | -2.91980 | -2.83579
-1x10° | 1.04148 | 1.03828 | 1.03494 | 1.03161
-3x10° | 3.08744 | 3.00381 | 2.91980 | 2.83579
Ec 0.001 0.003 0.005 0.007
Table-5
Nusselt Number at y=+1
G [ 1 11 \Y V VI
100 | 0.23091 | 0.22748 | 0.2212 | 0.2141 | 0.2542 | 0.2758
300 | 0.21491 | 0.20619 | 0.1906 | 0.1739 | 0.2259 | 0.2542
-100 | 0.2469 0.2487 | 0.2519 | 0.2543 | 0.2660 | 0.2889
-300 | 0.2629 0.2701 | 0.2826 | 0.2945 | 0.2809 | 0.2998
Annexure- 2
D | 100 | 200 | 100 | 100 | 100 | 100
M 2 2 4 6 2 2
o 2 2 2 2 4 6
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Table-6
Nusselt Number at y=-1
G I 1 11 v \Y VI
100 | -1.30765 | -1.2969 | -1.2853 | -1.2929 | -1.2842 | -1.2691
300 | -1.2976 | -1.2868 | -1.2623 | -1.2771 | -1.2898 | -1.2748
-100 | -1.3176 | -1.3268 | -1.3329 | -1.301 | -1.3012 | -1.2849
-300 | -1.3376 | -1.3468 | -1.3642 | -1.322 | -1.3192 | -1.3026

See Annexure- 2

The rate of heat transfer graduates the Nusselt number Nu shown in table 5-8

it is found that the rate of heat transfer reduces the increase in G>0 and enhances with
G<0 at y=+1. The variation of Nu with Darcy parameter D 'shows that lesser the

permeability of the porous medium smaller the |Nu | in heating case and larger in

cooling case. With respect to Hartmann number M shows higher the Lorentz force

smaller |[Nu | and for higher Lorentz force larger |Nu | aty=+1.

Table -7
Nusselt number (Nu) aty =1
G [ I I v
1X10° | -0.55027 | -0.53007 | -0.51297 | -0.49587
3x10° | -0.48588 | -0.33687 | -0.19097 | -0.04507
Ec 0.001 0.003 0.005 0.007
Table -8
Nusselt number (Nu) aty =-1
G [ I 1T v
10° | 155250 | 154583 | 1.53466 | 152350
3X10° | 1.50385 | 1.39987 | 1.29140 | 1.18294
Ec | 0.001 | 0.003 | 0.005 | 0.007

In the heating case and in the cooling case it enhances Nu with M=4
depreciates with M=6 at y=+1 and at y=-1. An increase in strength of heat generating
source parameter « enhances with radiation of heat transfer at y=+1 and depreciates
it at y=-1. We find that rate of heat transfer with Ec is depreciates at both the walls.
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